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"Timing is all important," 

- Ernesto Javier 
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CHAPTER I. INTRODUCTION 

The economic theory of clubs is aimed at filling in the "awesome 

Samuelson gap" [5, p. l] between the existing theories of purely public 

and purely private goods. It should be recalled that a purely public 

good is one that is completely non-rival in consumption. If additional 

people consume a fixed quantity of a public good, the utility of those 

already consuming the good is unaffected. On the other hand, private 

goods are completely rival in consumption. If one person consumes a 

given quantity of a private good, that amount is simply unavailable to 

anyone else. However, there is a group of goods and services which fall 

into the gap between these categories. These are goods that can be 

shared, unlike private goods, but not endlessly so, as with public goods. 

Such items are sometAiere between the two extremes, and are known as 

impurely public or club goods. 

A common exançle of a club good is a swimming pool. Unlike a purely 

private good, more than one person can use the pool at the same time. 

However, as more and more people get into the pool, the enjoyment of 

those already in it diminishes. In a word, the pool gets conjested. 

This situation creates a classic economic problem. Because the pool 

can be shared, per-person cost can be reduced if a club^ is formed and 

the facility is shared. The more people there are in the club, the 

^t should be noted that clubs may be either public or private. 
Individuals may join together to form a club, or may create a governmental 
unit for the same purpose. However, this dissertation implicitly assumes 
that the clubs discussed are public. 
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lower the per-person. cost, but the more congested the pool will be. The 

"right" number of people for the club depends upon the members' 

evaluation of the gains to be made from lowering per-person cost and the 

losses to be sustained from additional congestion. It is entirely possible 

that an individual will be rich enough and sufficiently averse to 

congestion that he will buy his own pool. Note that the swimming pool is 

still a club good, despite the fact that it is owned by a single person. 

Property rights do not alter the intrinsic nature of goods. Thus, many 

goods generally considered private goods (such as televisions and 

automobiles) are by nature actually club goods. 

Congestion manifests itself in tiie swimming pool \Aien the addition of 

extra swimmers inhibits one's ability to swim about freely. However, 

congestion takes on different forms with different types of club goods, A 

congested tennis court, for example, is not one where there is not enough 

room to swing a racket, but rather tdiere there are more people wanting to 

play than for whom there is room. The result is the creation of a waiting 

line or "queue", and the congestion costs manifest themselves in terms of 

waiting time costs. Likewise, a congested fire suppression system is one 

•vdiere there are more fires than units available to put them out. Once 

again, congestion costs appear in terms of time; in this case, time 

spent waiting for a fire-fighting unit to become available. 

It should be obvious that, all else equal, increasing the number of 

people in the tennis club or fire suppression system will increase the 

amount of time one might expect to wait for an open court or a free fire 

truck. These time costs must therefore be weighed against the reductions 
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in per-per son cost of providing the club good that stem from increasing 

club membership. But increasing club membership has one additional 

implication: it increases the physical size of the club's "district". 

Fire trucks -will spend more time in transit between fires in larger 

districts, ceteris paribus, and tennis players will spend more time 

traveling to and from the courts. Additional space thereby translates into 

additional time. 

Surprisingly, the fomal economic theory of clubs has so far 

virtually ignored these important spatial and temporal considerations [31]. 

Some work has been done along these lines, but almost exclusively by 

operations research practitioners [4, 6, 7, 10, 20, 21, 22, 23]. Thus, 

no effort has been made to incorporate this work into a more general 

theoretical framework such as the economic theory of clubs. 

The primary purpose of this dissertation is to take a step towards 

eliminating this deficiency by integrating spatial and temporal 

considerations into the economic theory of clubs. In so doing, certain 

techniques developed by the operations research discipline have been used, 

with the secondary purpose of making economists aware of the work being 

done in that area. In addition, this dissertation incorporates a Von 

Neuman-Morganstem ^proach to expected utility maximization. This idea 

also has never been used in conjunction with formal club theory [31]. 

Chapters II and III of this work focus on these issues as they apply 

to local emergency services, with a special emphasis on fire suppression 

systems. Chapter IV extends the analysis to include man-made recreational 

facilities, with tennis courts being used as a specific example. 
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CHAPTER II. FIRE SUPPRESSION DISTRICTS: A GENERAL MODEL 

The Elements of the Problem 

In an emergency, time is of the essence. The longer a fire bums, 

for exanç)le, the more damage it will do. The goal of every fire 

suppression service is, therefore, to minimize the length of time a 

fire bums, given the ever-present cost constraint. 

The total time that a fire bums depends upon four things: 

detection and reporting time, queuing time, travel time, and service 

time. Detection and reporting time is the time that elapses between 

the moment the fire starts and the moment it is reported to the fire 

station. To a large extent, this variable cannot be influenced by 

changes in the configuration of the fire district (i.e. by having more 

fire companies^ or fewer people in the "club"). Fire detection and 

reporting is for the most part the responsibility of the individual, 

who may choose to install smoke detectors or similar devices. Hence, 

detection and reporting time is a variable assumed to be exogenous to 

the model, since it is beyond the control of the group (with the possible 

exception of building code legislation, but that is beyond the scope of 

this work). 

Queuing time is the time that elapses between the moment the fire 

station receives the report of a fire and the moment a fire conçany 

^The phrase "fire company" will be used to refer to a standard fire-
fighting xmit. Surprisingly, there has been very little research done on 
the nuts and bolts issues of how many fire-figjhters to put into each 
company, the types of tmcks to use, etc. [33]. Hence, the exact 
composition of each fire company is assumed to be exogenously determined. 
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becomes available to respond to the report. With the assxmption of 

autonomous fire districts, if all fire companies are already busy, the 

caller must vaxt until one finishes its current task before one can 

respond to his alarm. There is a branch of operations research devoted 

to the study of queues, and Appendix A of this paper offers the reader 

an introduction to the area. As shall become apparent later on, 

changing the configuration of the fire district can significantly affect 

queuing time. 

Travel time is the time that elapses between the moment a fire 

company is dispatched to a fire and the moment it arrives on the scene. 

All else equal, the more people there are in the fire district, the 

larger the physical size of the district, and hence, the greater average 

or median travel time will be. 

Service time is the amount of time that elapses between the moment 

the fire company arrives at the scene of the fire and the moment the 

fire is finally extinguished. Service time depends upon a variety of 

factors including the training of the fire company, its size, the 

technology it possesses, and the nature of the particular problem at 

hand. Since the composition of a fire company has been assumed to be 

exogenously determined, it follows that service time is also an 

exogenous variable. Note, however, that both service time and travel 

time indirectly influence queuing time, since the quicker a unit can 

get to and extinguish a fire, the sooner it will be available for 

another assignment. 
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The Decision-Making Framework 

As indicated above, the two variables that can be affected by 

altering the configuration of fire districts are queuing time and travel 

time. Queuing time, once determined, will be the same for everyone in 

the district. The origin of the call for help in no way affects the 

probability that the fire companies will all be busy. However, travel 

time depends upon where the individual lives relative to the fire station. 

Someone living adjacent to the fire station can expect travel time to be 

much less than it would be for someone living a few miles away. This 

observation is important t^en considering how different individuals 

perceive the "efficiency" of a particular district configuration. 

One issue to be decided is the level of per-person cost (or "dues" 

in club theory jargon). With the assumption of equal cost sharing, 

determining the level of dues is equivalent to determining the ratio of 

fire companies (S) to people in the district (N). This is because total 

cost is equal to the (annualized) cost of each fire company (C) times 

the number of companies. Hence, cost per-person is (C*S)/N. With C 

given and independent of S, there is a one-to-one correspondence between 

dues and S/N. 

But determining S/N is only part of the story. For a given S/N, 

the levels of S and N must still be decided. If, for example, 

S/N = 1/10,000, one must determine Aether the district should contain 

1 fire company and 10,000 people, 2 conçanies and 20,000 people, or 10 

conçanies and 100,000 people. Obviously, including more people in the 

district will increase travel time to the people living at the outer 
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edge of the district. However, increasing S and N proportionally will 

reduce mean queuing time. This economy of scale in queuing time is "a 

property which is common to nearly all realistic queuing models" [6, 

p. 18]o An interesting political problem thus arises because people 

living near the fire station will want S and N to increase indefinitely 

(given S/N), since it will reduce queuing time without affecting travel 

time to them. However, as N increases, people living on the boundary 

will expect large travel times, and will therefore desire smaller 

districts. The equilibrium sized district (again, given S/N) postulated 

in this work is where the (expected) utility of the individuals living 

the median distance from the center of the district is greater than the 

(expected) utility of individuals living the median distance from the 

center of any other sized district. (Appendix B shows how median 

distance is calculated. It also demonstrates that median distance is 

larger than mean distance. Thus, the result obtained here is certainly 

different from that v^ch would occur under a "veil of ignorance". 

Under such a veil, "no one knows his place in society" [28, p. 12], so 

no one would have any idea idiere the fire stations would be located. 

If everyone were risk neutral, they would vote such that the district 

were configured so as to maximize the expected utility of the individual 

living the mean distance from the center of the district. If risk 

aversion were prevalent, district size would depend upon the degree of 

risk aversion, and would coincide with the result obtained here only by 

accident.) The equilibrium is also sensitive to agenda control and other 

public choice issues beyond the scope of this dissertation. 
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Having determined ^at S and N will be for each possible S/N, 

every individual will know his position relative to the fire station for 

every S/N, and will vote so as to maxiniize his own expected utility. By 

invoking the median voter theorem in a majority-rules voting framework, 

it can be argued that the median preference will dominate [24]. 

The Nature of the Utility Function 

The model presented here defines utility as being a function of 

wealth (Z). Mathematically, U = TJ(Z). The amount of wealth an 

individual possesses depends upon his initial endowment, payments made 

for services to protect that endowment (dues), and potential loss due 

to fire. 

Since the need for an emergency service such as a fire suppression 

company is uncertain, behavior consistent with the Von Neuman-Morganstem 

expected utility maximization hypothesis is postulated. The essence of 

this hypothesis is that under conditions of uncertainty, individuals 

will behave so as to maximize the expected value of utility. (Proofs 

of this contention, given the necessary assumptions, can be found in 

References 15, 18, and 39.) 

In this chapter, no restrictions are placed on the form of the 

utility function. For illustrative purposes, a risk averse utility 

function will be employed (i.e. U'(Z) > 0, T?'(Z) < 0, -siiere U'(Z) and 

U"(Z) are the first and second derivatives of utility with respect to 

wealth), but the model is applicable to other utility functions as well. 

In the next chapter, a risk neutral utility function will be specified 

which will allow us to simplify the analysis. 
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Choosing S and N for Each Level of Per-Person Cost 

As noted above, there is a one-to-one correspondence between the 

level of per-person cost (dues) and the ratio of fire conçanies to 

people (S/N). It was also noted that S and N were chosen for a particular 

S/N so as to make the expected utility of the individuals living the 

median distance from the center of the district greater than the expected 

utility of similarly placed individuals in alternatively sized districts. 

This section describes that process. 

Figure 1 below displays two rays from the origin, labeled (S/N)^ 

and (S/N)2. 

S 

1 

0 N 

Figure 1, Iso-dues lines 

Along each ray, S/N is constant. If the cost of each fire company 

is independent of the number hired, then along each r^ per-person cost 

or dues is also constant. Since (S/N)2 > (S/N)^, dues for (S/N)2 are 
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greater than dues for (S/N)^ [1, 2, 3], The task is to choose a 

particular ray, and then to locate the appropriate S and N. 

is defined as wealth net of dues. Therefore, = Z - dues, and 

is the value of wealth if there is no fire, z is defined as wealth 
a 

that is not subject to fire damage (money in a savings account, for 

example). Hence, Z^ is the value of wealth if a catastrophic fire occurs 

•vâiich destroys all burnable wealth. - Z^ is thus the amount of 

wealth subject to loss by fire. 

It is hypothesized that loss due to fire (L) is a function of the 

length of time the fire bums (T). Mathematically, L = L(T). The shape 

of this loss function depends upon a variety of factors including the 

construction of the building, the nature of its contents, the number of 

doors and windows, climatic conditions, and the value of the building 

and its contents. In this chapter, no restrictions are placed on the 

shape of the loss function, though for illustrative purposes it is 

drawn such that L'(T) > 0 and L"(T) > 0. In the next chapter, it will 

be assumed to be linear to simpliJ^ the analysis. 

Let Pj, be the probability that a fire will occur at any particular 

residence (assumed to be equal for everyone). Expected utility for any 

individual can then be expressed as^ 

& 
E[U(Z)] = (1 - Pj,)[U(Zj^)] + Pj. J U(Z)f(Z)dZ 

^a 

"This foirmulation is standard, and can be found in Reference 35, 
for example. 
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where f(Z) is t±e probability density function of wealth in the event of 

a fire. This density function is derived from the probability density 

function of T and from the loss function L(T). 

Since T is the sum of four random variables (detection and reporting 

time, queuing time, travel time, and service time), its density function 

is obtained from the density functions of its four-component random 

variables. (An example of the general technique is presented in 

Appendix C.) 

The probability density function of T is also the probability 

density function of L, since P(T=t) = P(L(T) = L(t)). In other words, 

if is the probability that the fire will bum for a period of time, 

t, then P^ is the probability that loss will be L(t), 

Similarly, there is a one-to-one correspondence between loss and 

wealth remaining after the fire. If loss due to fire is L(t), then 

wealth must be - L(t). Therefore, if loss L(t) occurs with 

probability P^, wealth - L(t) occurs with probability P^. The 

probability density function of T is, therefore, transformed into the 

probability density function of wealth, f(Z). The idea is illustrated 

in Figure 2. 

The diagram in the northwest quadrant shows the probability density 

function of T, and shows the probability of a fire burning for any 

particular length of time, t. The graph in the southwest comer shows 

the loss function, L(T). The probability of any particular amount of 

loss, L(t),can be seen by going directly north to the probability density 

function of T. Note that loss due to fire can be a maximum of Z^ - Z^, 
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P(T=t) 

L(T) L(T) 

L(T) 

0 Z T Z 0 

Figure 2. Deriving f(Z) 
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since by definition is wealth that will still exist even if the fire 

destroys all flammable wealth. 

The picture in the southeast quadrant translates loss into remaining 

wealth. If loss is zero, then wealth is - 0 = Z^: If loss is 

Zjj - Z^5 then wealth is Z^ - (Z^ - Z^) = Z^. Since one can determine the 

probability of loss being any particular amount, L(t), one can also 

determine the probability of wealth being any particular amount, 

Z^ - L(t). Finally, by moving up to the utility function in the 

northeast quadrant, one can determine the utility of any particular 

level of wealth. 

The position of the utility function obviously depends upon the 

exact function specified. In the risk averse case pictured, the function 

is concave from below. A risk neutral utility function would be linear, 

and a risk loving utility function would be convex from below. 

The location of Z^ in the southeast comer depends upon the 

individual's initial endowment of wealth, as well as dues (which are a 

function of C). The location of Z^ depends upon the fraction of Z^ that 

the individual had in a form not subject to fire damage. 

The shape of the probability density function of T as depicted in 

Figure 2 is some^Aiat arbitrary, since its exact shape depends upon the 

density functions of the conçonent variables (please see Appendix C). 

Note, however, that even with S/N fixed, the shape of this density 

function will change as S and N change. As previously indicated, 

increasing S and N (S/N constant) will cause the mean of the queuing 

time density function to decline, but the mean of the travel time density 
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function will increase (a larger N implies a physically larger district). 

The S and N -wfaLch ultimately result in the f(Z) which generates the 

greatest expected utility for the individuals living the median distance 

from the center of the district will be chosen. Designate these values 

* , * 
as S and N . 

Unfortunately, the complexity of the queuing time equation and the 

difficulty of calculating the probability density function of T (please 

see Appendices A and C) preclude an analytic solution to this problem. 

The purpose of Chapter III, therefore, is to examine the model under 

certain simplifying assumptions. These assuiig)tions will still not 

allow for an exact analytic solution, but they will allow solutions to 

be obtained by means of simulations. 

The Expansion Path and the Choice of S/N 

tit yt 
By calculating S and N for each S/N, an entire set of equilibrium-

sized districts is identified. This collection of points is known as 

an expansion path, and delineates the district configurations potentially 

available. Along an expansion path, a larger S/N implies both better 

service and higher dues. Off the expansion path, a larger S/N still 

implies higher dues, but not necessarily better service [2]. Note that 

the position of the expansion path depends upon all of the elements needed 

to choose each S and N , including the utility function. 

Given the S and N that will prevail for each S/N, each voter will 

desire the S/N that will maximize his expected utility. In this 

situation, each person knows the travel time and queuing time that will 

be associated with each level of dues. A larger S/N will affect expected 
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utility in two w^s. First, the mean of the probability density function 

of T will be reduced. Secondly, dues will increase, so (and probably 

Z^) will be reduced. Figure 3 compares two alternatives, (S/N)^ and 

(S/N) ,̂ where (S/N)^ > (S/N)^. 

By choosing (S/N)2» the individual will have a higher probability 

of fire being extinguished sooner than if he were to choose (S/N)^, 

However, his wealth in the event that there is no fire is reduced by 

the amount of extra dues from Zjj^ to Zjj^- Mathematically, the individual 

must compare the value of expected utility with (S/N)2 to that with 

(S/N)-, i.e. compare 

E[U(Z)]2 = (1 - Pp)CU(Zjj^)] + Pj. J U(Z)f2(Z)dZ 

E[U(Z)]^ = (1 - Pp)[U(Zjj )] + Pp J U(Z)fj^(Z)dZ . 

' S 
Each individual will select the S/N that produces the largest 

E[U(Z)]. Obviously, different individuals will have different 

preferences. Wealth, utility functions, location (and hence, f(Z)) will 

all differ from person to person. In addition, the fraction of wealth 

kept "out of harm's way" (Z^) will differ, as mi^t detection and 

reporting time (due to individual efforts to install smoke alarms, etc.). 

The loss function will also vary from individual to individual, as it 

depends on a variety of personal factors described before. The 

individual with the median preference will dominate in the choice of 

S/N in a majority-rules voting framework. Note that this individual 
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U(Z) P(T=t) U(Z) 

T 0 Z 0 

L(T) 
L(T) L(T) 

T 0 Za Za. 0 

Figure 3, Two points on the expansion path con^ared 
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need not be among the individuals living the median distance from the 

center of any particular district. Individuals choose their expected 

tit ît 
utility maximizing S/N given the S and N associated vith each S/N. 

With that information, they will know where they will live relative to 

the fire station for each S/N, and will vote on the basis of that 

information. 
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CHAPTER III. FIEE SUPPRESSION DISTRICTS: A RESTRICTED MODEL 

The Nature and Purpose of the Restrictions 

This chapter -will employ the same model as presented in the previous 

chapter, but with three modifications. The first is the restriction 

that all utility functions be risk neutral. According to the Arrow-Pratt 

measure of absolute risk aversion [27], an individual is risk neutral if 

his utility function is such that: 

Since the second derivative of any linear function is equal to zero, a 

linear utility fxmction is a risk neutral utility function. One such 

utility function is U = bZ, where b is a positive constant, and Z is 

wealth as before. However, all Von Neuman-Morganstem utility functions 

are unaffected by linear transformations [18, p. 36], so the above 

function may be multiplied by 1/b. The resulting function, U = Z, will 

be the function used here. 

The second modification is to restrict the loss function to be 

linear in time. In other words, loss will be equal to 1 = gT there g 

is a positive constant (dollars lost per unit of time) and T, as before, 

is the total length of time the fire bums, (En^irical work on the nature 

of this loss function has been sparse and inconclusive, and has focused 

mainly on response distance as the explanatory variable [20]. However, 

there is weak evidence that loss is in fact a linear function of response 

time [20].) The expected value of T is simply the sum of mean detection 
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and reporting time, mean queuing time, mean travel time, and mean service 

time. 

Risk neutral utility functions have the unique property of having 

the utility of the expected value of wealth equal to the expected value 

of the utility of wealth [18, p. 49]. Linear loss functions are such 

that the loss associated with the expected value of T is equal to the 

expected value of loss. In equation form, 

E[U(Z)] = U[E(Z)] 

and 

E[L(T)] = L[E(T)] . 

These two restrictions allow one to focus exclusively on the expected 

values of all variables. Thus, instead of having to employ whole density 

functions, only the means of density functions need be used. This 

simplification will make the analysis considerably more manageable. 

The third restriction is the assumption that all individuals in a 

district have the same amount of wealth. This assunçtion will simplify 

a portion of the conçarative statics of the model. If Tiebout [34] 

is to be believed, this assumption may be an approximation of what 

frequently occurs in the real world anyway. 

Choosing S and N for Each Level of Per-Person Cost 

As before, detection and reporting time as well as service time are 

assumed to be exogenous to the model. The concerns here, then, are the 

effects on the expected value of queuing time (W^) and on the expected 

value of travel time to the median individuals (TT) of changing the 
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district's configuration. In other words, how do W and TT change as S 
q 

and N change, given S/N? 

As mentioned in Chapter II, a characteristic of mean queuing time 

is that it declines as S and N increase proportionately. Doubling both 

the number of fire companies and the number of people in the district 

will cause W to decline. Of course, the larger S/N is, the smaller W 
9 q 

is for any particular N. These ideas are illustrated in Figure 4. 

W 

N 

Figure 4. Expected queuing time 

•What Figure 4 implies is that the queuing time conponent of T can be 

reduced simply by increasing the size of the district, S/N constant. 

However, increasing district size will also increase travel distance to 

the median individuals' residences (please see Appendix B). This 

additional travel distance translates into additional time, as described 

below. 
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The simplest relationship to postulate between travel time (TT) and 

distance (D) is TT = D/V vhere V is the average velocity of the fire 

trucks. However, a more sophisticated relationship has been developed by 

Kolesar et [22] and tested in New York City. Their model attempts 

to account for the time needed for the trucks to accelerate as well as 

for the effects of deceleration xdien the trucks leave the main roads 

as the destination is approached. With this in mind, the following 

equations were constructed: 

TT = 2(D/a)l/2 if D < 2d, and 

TT = Vc/a + D/Vc if D > 2d 

where a is the rate of acceleration, Vc is the cruising velocity of the 

vehicles, and d is the distance required to achieve cruising velocity. 

Since the model as presented contains three different units of measure, 

it is necessary to convert all travel times into minutes as follows: 

TT = 2 — if D < 2d, and 
a — 

TT = Vc/a + 1^ if D > 2d . 

Estimates of the model's parameters were obtained by Kolesar et al. 

[22] for New York City. The rate of acceleration was found to be 

29.0 miles/hour/minute, cruising velocity was 39.2 miles/hour, and the 

distance required to achieve cruising velocity was .44 miles. They also 

found that travel times were virtually the same at night as during the 

day and that the peak rush hour increased travel time by a maximum of 20%. 
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With this travel time model and the method of relating median travel 

distance to population presented in Appendix B, it is possible to 

establish a relationship between travel time to the median individuals' 

residences and district population. Since the area of a district grows 

more rapidly than median distance, this relationship is of the form 

shown in Figure 5. 

Time 
TT 

0 

Figure 5, Expected travel time to the median individuals 

In other words, TT increases as N increases, but at a decreasing rate. 

Let expected response time to the median individuals' residences (KE) 

be defined as the sum of and TT. By so doing, it is possible to 

determine the district size that minimizes KE for a given S/N. The idea 

is demonstrated in Figure 6. 

* 
N represents the equilibrium population size for a district with 

a given S/N, since it minimizes the expected response time to the median 
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Time 

RI = TT + W 

TT 

W (— constant) 

N* 0 N 

Figure 6. Minimi zing RT 

* 
individuals* residences. With S/N given, determining N also determines 

s . Returning to Figure 1 in Chapter II, one can plot S and N as in 

Figure 7. 

S 

S/N 

* 
S 

N* N 

Figure 7. Plotting S and N 
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Note, however, that S can only take on integer values. With the 

makeup of fire companies exogenously determined, one can have one fire 

company or two fire companies, but not one and a half fire conçanies. 

* 
As a result, N can take on only values tSiich are integer multiples of 

the N in the given S/N. Suppose, for example, that S/N = 1/15,000. If 

s equals 2, N must equal 30,000. If S equals 3, N must equal 45,000. 

tfc yir 
s can never equal 2.5, so N can never equal 37,500. This phenomenon 

is important to keep in mind •tdien considering the comparative statics of 

the model (see below), since it imparts a certain "lunçiness" to the 

model. 

This model can be used to predict how changes in various parameters 

will affect the equilibrium district size for each level of per-person 

cost. For example, an increase in the frequency of alarms (due either to 

an increase in the number of fires or in the number of false alarms) will 

cause the fire companies to be busy more often. This will cause the 

* 
queuing function to shift out, increasing N as illustrated in Figure 8. 

Intuitively, as queuing time becomes a larger component of response time, 

the reductions in due to increases in N (S/N constant) outweigh the 

increases in TT over a larger range of N. Therefore, the minimum point on 

the response time function is shifted rightward, and the equilibrium size 

of the district increases. A decrease in the frequency of alarms has the 

opposite effect. The complexity of the queuing time equation (see 

Appendix A) precludes an analytic proof of these results, but they 

consistently occur in simulations of the model as reported in Appendix D. 

The simulations also illustrate the "integers probleirf' alluded to above: 
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Time 

KT 

RT 
TT 

0 

Figure 8. An increase in alarm frequencies 

Since S and N can change only by discrete amounts, under some 

circumstances, a change in alarm frequencies will not be large enough 

to alter S or N . There is, in essence, a "threshold effect", which 

indicates that minor changes in the parameters will not always alter the 

location of the equilibrium. 

A decrease in service time reduces the time that a unit is busy and 

* 
hence shifts the queuing function down. N will therefore tend to 

* 
decrease. Analogously, an increase in service time will increase N . 

These conclusions are likewise supported by the simulations in Appendix D 

and are subject to the same threshold effect. 

An increase in population density decreases travel time to the Nth 

* 
person's residence. All else equal, this increases N , since reductions 
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in W will be larger than increases in TT over a larger range of N. 
q 

However, less time spent traveling means that units will be available for 

new assignments sooner, thereby reducing queuing times. This effect tends 

to decrease N . The net effect on N depends upon the relative sizes of 

the counteracting tendencies. The impact on travel time of a change in 

population density is: 

ÔTT ÔD 
ÔD • ÔA 

where A represents density. The impact on queuing time is 

dTT ^ 
ÔTT 3D ÔA 

where is the mean blocking rate.^ Once again, however, the expression 

for is intractable, so cannot be obtained. The simulations 

indicate that in general, an increase in population density tends to 

* 
increase N for a given S/N, but again the threshold effect is operative. 

The Expansion Path 

* * 
As before, calculating S and N for each S/N allows one to define 

an expansion path. For club goods in general, the shape of the expansion 

blocking time is the interval between the moment one customer begins 
service and the moment the next customer can be served. In the case of 
queues in a grocery store, blocking time and service time (see Appendix A) 
are the same. However, in situations such as fire service, blocking time 
is equal to service time plus travel time between fires. This paper 
follows Alec Lee's advice that when appropriate, queuing models should use 
blocking time instead of service time [23, p. 13]. 'With respect to the 
question at hand, changes in travel time directly affect blocking time and 
therefore, queuing time. A failure to distinguish between service time 
and blocking time would be to overlook this point. 
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path is indeterminate. Adams [1, 2] has shown that although goods per 

person increases along the expansion path, the size of the club (in terms 

of S and N ) may either rise or fall as S/N increases. However, the 

simulations presented in Appendix D indicate that for fire suppression 

services, S and N both decrease as S/N increases, as shown in Figure 9. 

The stepwise shape of the expansion path results from the aforementioned 

integers problem. The reduction of district size as the quality of 

service increases is intuitively reasonable, because as S/N increases, 

queuing time becomes less and less important. Hence, the reductions in 

S 

(v) / W / W 
5 

4 
Expansion path 

3 

2 

1 

N 

Figure 9. The expansion path 
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expected queuing time from increasing S and N proportionately will be 

offset more quickly by the increases in travel time caused by increasing N. 

The same factors that were previously shown to affect the location 

* 
of N for each S/N value affect the location of the entire expansion path 

in exactly the same fashion. For example, an increase in the frequency 

of alarms increases N and S for each S/N value and causes the expansion 

path to shift "up" toward larger-sized districts. 

Choosing the Equilibrium S/N 

Given the club configurations available as presented by the 

expansion path, each voter will desire the S/N which maximizes his 

expected utility. Recall that in this chapter utility is defined as 

being equal to wealth, i.e. U = Z. Hence, E(U) = E(Z). Wealth net of 

dues is again designated by and is the value of wealth if there is no 

fire. In the event that there is a fire, wealth will be equal to 

Zjj - L, T^ere L = gT as defined previously. With being the probability 

of a fire occurring, expected utility is: 

E(U) = (1 - Pj.) (Zjj) + P^(Z^ - gT) . 

Higher levels of S/N increase expected utility by reducing expected 

response time, but decrease expected utility by increasing dues and 

therefore, reducing Z^. For any particular individual, the utility 

maximizing S/N occurs where the gains from decreasing T are just offset by 

the losses associated with higher dues. The utility maximizing S/N of the 

individual with the median preference will be the equilibrium S/N, 

designated (S/N) . This individual need not live the median distance 
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away from the center of the equilibrium district. However, for 

simplicity, the simulations assume that he does. 

* 
There are several factors that will affect the location of (S/N) . 

An increase in the cost of fire conç>anies, for example, increases dues 

* 
for each S/N. All else equal, this will lead to a lower (S/N) because 

the reduced expected losses from having a higher S/N are more quickly 

outweighed by the extra expense. Note, however, that the location of 

the expansion path itself is unaffected if the price of fire companies 

is independent of the quantity a district purchases [1, 2], Again, 

simulation results support this conclusion and shed light on some other 

points as well. For example, as the frequency of alarms declines, the 

* 
choice of (S/N) becomes more sensitive to changes in the cost of fire 

companies. As standard economic theory predicts, the less necessary a 

good becomes, the more elastic will be the demand for that good. The 

simulations also show a mild trend supporting the idea that a 

technological improvement that reduces service time will reduce (S/N) . 

This would occur for two reasons: First, a reduction in service time 

reduces queuing time, shifting the expansion path "down". Response time 

for each S/N will decline, -vAiich means that a lower S/N is needed to 

maintain the same service level. Secondly, the service time conçonent of 

T declines, reducing loss in the event that there is a fire. Lower 

response times would, therefore, not be quite as important as they were 

previously. The simulations also indicate that, all else equal, a 

* 
decrease in population density will tend to increase (S/N) . 
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With a risk neutral utility function, the marginal utility of wealth 

is constant. Therefore, the effect of an increase in wealth will manifest 

itself only in an increase in the slope of the loss function. (This is 

assuming that wealthier individuals have both more expensive and more 

numerous possessions. Hence, the wealthier an individual is, the more 

damage the fire will do in a given amount of time.) A reduction in 

"k 
expected response time is therefore worth more, and (S/N) will increase 

as wealth increases. This result is also supported by our simulations. 

The universal adoption of smoke or heat sensors would reduce fire 

detection and reporting time. This would reduce the expected value of 

T, and hence, reduce expected loss in the event of a fire. All else 

* 
equal, this would tend to reduce (S/N) . 

Fire Insurance and Rent Gradients 

Until now, the possibility of purchasing fire insurance has been 

ignored. For risk neutral individuals, this is of no concern, since 

they wouldn't buy insurance even if it were available. This is because 

insurance companies need to charge a premium in excess of the expected 

value of loss in order to cover operating expenses and to make a profit. 

The expected value of loss is Pp(gT), so the premium (R) must be greater 

than Pp(gT). The expected utility of a risk neutral individual without 

insurance is 

E(U) = (1 - Pp)Z^ + Pp(Z^ - gT) . 

The expected utility of a risk neutral individual with insurance that 

promises to pay the value of the loss in the event of a fire is 
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E(U) = (1 - Pp)Z^ + Pp(Zjj - gT) + Pp(gT) - R . 

Since it has already been established that R > Pp(gT), the individual is 

clearly better off without the insurance. 

In the general model where risk aversion is possible, fire insurance 

becomes a legitimate concern. In that situation, insurance becomes 

somewhat of a substitute for fire suppression services. It is probable 

that individuals will desire both insurance and fire suppression services 

up to the point where the ratios of their marginal expected utility to 

their marginal cost are equal. In addition, individuals who, due to the 

voting rules, do not get their utility maximizing S/N (or S and N given 

S/N) may use insurance as a means of adjusting. People tdio get worse 

fire protection than they want may buy more insurance than they might 

have with better protection, and vice versa. In addition, it should be 

pointed out that insurance companies link their insurance rates to the 

quality of fire suppression services in an area. Thus, individuals have 

an extra incentive to demand a hi^ier S/N since it will also reduce their 

insurance rates. 

It is also worth noting that with equal dues and a homogeneous 

population (having the same wealth and utility functions), a rent gradient 

will probably be established. Since response time to the edge of the 

district exceeds response time nearer to the center, expected loss is 

greater at the edge. All else equal, individuals will be better off 

living nearer to the center, so rents will be bid up there until rent 

differentials reflect the advantages of living nearer to the fire station. 
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CHAPTER IV. MAN-MADE RECREATIONAL FACILITIES 

This chapter vill extend the analysis of the preceding chapters to 

consider its application to man-made recreational facilities such as 

tennis courts. While the situations are similar in many respects, there 

are two significant differences between the emergency service and the 

recreational facilities problems. The first is that in the former case, 

the service is brought to the individual, while in the latter situation, 

the individual travels to the facility. Secondly (and more importantly), 

it was assumed that everyone had a potential need for a fire suppression 

service (i.e., everyone had a positive probability of having a fire). 

However, some individuals may never play tennis. Any model dealing with 

the provision of recreational facilities must therefore take this 

diversity of preferences into account. 

In this chapter, the same decision-making framework as was used in 

the prior chapters will be employed. Let S be the number of tennis 

courts and N be the number of people in a district. Then the choice of 

S and N given S/N will be such that the utility of the persons living 

the median distance from the courts will be greater than utility of 

individuals living the median distance from the courts in any other sized 

district. Given the district configuration for each S/N, the individual 

with the median preference will ultimately decide on a particular S/N. 

The Utility Function 

The utility function used in this chapter will be of the form 

U = U(Y, H, G) 
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where Y represents expenditxires on all goods except those associated with 

H, "(Aiich stands for the nimiber of sessions the individual spends playing 

tennis, G represents all remaining leisure time. The individual earns 

income by working at a job ^Aiich pays w dollars per hour. 

To make the problem manageable, it will be assumed that the utility 

function is risk neutral with respect to the relevant variables. As will 

become apparent later on, these variables include the "price" of H, and 

hence, reference to an indirect utility function is necessary to determine 

risk neutrality. Appendix E discusses this process and is included for 

the reader's convenience. As before, the assumption of risk neutrality 

allows us to focus exclusively on the expected values of all variables. 

The Elements of the Problem 

As before, there is a one-to-one correspondence between per-person 

cost and the ratio of courts to people (S/N), Let P be the (annualized) 

cost of each tennis court, Per-person cost (dues) can then be defined 

as (PS)/N. If P is independent of S, dues are linearly related to S/N. 

It will be useful later on to have dues expressed on a daily basis, so 

let us define P = P/365, so dues will be equal to 

This "tennis tsx^ is a lump-sum tax that must be paid whether or not the 

individual uses the tennis courts. If the courts are used, then the 

individual incurs certain costs per trip, both in terms of time and money. 

Time costs include queuing time, round-trip travel time, and the time 

needed to.play a session of tennis. Let the expected value of these 
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variables be designated as TT, and X, respectively. Monetary cost 

is the round-trip transportation cost equal to eT^ •sAere e is the cost 

per mile and T^ is the distance in miles to and from the courts. 

If we monetize the time costs by multiplying them by w, the 

opportunity cost of time, we can determine the expected value of the cost 

of one trip to the tennis courts. Let us designate this as the expected 

price of good H (Pg), and 

Pg = (W^ + TT + X)w + eTjj . 

The value of X is completely up to the individual, and is assumed to be 

independent of district size. However, the configuration of the district 

will influence the values of TT, and T^. 

Choosing S and N for Each Level of Per-Person Cost 

As noted above, a given level of per-person cost (dues) implies a 

given S/N. To determine the equilibrium sized district for a particular 

S/N, it is necessary to select S and N so that P is minimized for those 

individuals living the median distance from the center of the district. 

Once again, declines as S and N increase, S/N constant, but T^ and TT 

for the median individuals increase as N increases. P is therefore 

minimized for persons living the median distance from the center when 

S and N are such that (W^ + TT)w + eT^ is minimized, as pictured in 

Figure 10. (Recall that X is independent of S and N.) TT w may be less 

than or greater than eT^, depending on the values of w and e. The values 

of TT and displ^ed on the graph are those for the individual who 

would live the median distance from the courts. 
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$ 

(W +TT)w + eT. 

W «v 

0 

Figure 10. Minimizing for the median person 

^ * 
Given S/N, determining N automatically determines S , as was 

demonstrated in Figure 7. 

While no simulations have been run on this model, it is likely that 

the comparative statistics of it are similar to those of the risk neutral 

fire suppression model. For example, a general increase in the frequency 

* 
that people play tennis will cause W^*w to shift up, increasing N . An 

increase in X would have the same effect, as the longer people stay on 

the courts, the longer others will have to wait for a court to become 

available, all else equal. 

'k * 
Changes in e and w will also affect the location of N and S . If 

the price of gasoline, for example, were to increase, eT^ would shift up. 

This would make travel distance more significant than previously, probably 
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^ 
reducing N . An increase in w will shift both TT«v and up, with 

the net effect being ambiguous without resorting to simulations. 

Utility Maximization and the Equilibrium S/N 

* 
As before, an expansion path can be obtained by determining S and 

* 
N for each level of S/N. Given these configurations, each individual 

will desire the S/N that maximizes his utility. 

For a particular S/N, dues and P will be known. The utility level 

for a given S/N can, therefore, be determined by maximizing 

U = U(Y, H, G) 

subject to the constraint that 

24w = Py Y + [ 4- TT + X)w + e]^]S + wG + M 

or 

24w = Py Y + Pg H + wG + M . 

This constraint simply says that the individual's expenditures of 

money and (monetized) expenditures of time cannot exceed their maximum. 

24w represents the individual's maximum potential income. P^ is the 

price of "good" Y. Since Y is essentially an income variable, from now 

on P will be defined as being equal to one. As discussed previously, P 
y E 

is the cost per trip to the tennis courts. G is multiplied by w so as 

to reflect the opportunity cost of leisure. M represents the mandatory 

lump sum tennis tax (dues) associated with the particular S/N. 

We are now in a position to set up a Lagrangian, L, in order to 

solve the utility maximizing problem: 
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L = U(Y, H, G) + X(24w - Y - - wG - M) . 

The first order conditions for utility maximization are; 

ÔL/ÔY = ÔU/ÔÏ - X = 0 

ÔL/ÔH = ÔU/ÔH - XP„ = 0 

ôL/ôG = ÔU/ÔG - Xw = 0 

ÔL/ÔX = 24w - Y - PjjW - wG - M . 

The usual conditions for a utility maximum hold here as well. The ratios 

of any two marginal utilities are equal to the price ratios of the two 

goods in question. What makes this problem unusual is that by choosing 

a different S/N, the individual is able to alter the constraint in his 

utility maximizing problem. A different S/N means both a different M 

and a different P_, since W , TT, and T-, will change. The exposition of 
n q U 

this point can be facilitated by means of graphs. (The problem cannot 

be solved by fully differentiating the first order conditions because 

P contains W as an element. As noted previously, W is 
H q q 

undifferentiable.) 

Consider a particular S/N with its associated M and P . The 

individual's budget plane would be as depicted in Figure 11. 

The intercept on each axis is obtained by solving the constraint in 

the utility maximization problem with other variables equal to zero. 

For example, to obtain the intercept on the G axis, set Y = H = 0 and 

solve for G: 
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24w - M 

24w - M 

24'W - M 
w 

G 

Figure 11. The budget plane 



www.manaraa.com

39 

24w = Y + PgE + wG + M 

24w = wG + M 

or 

24w - M G = 
w 

Let us now consider the effect of increasing (S/N) to (S/N)'. First 

of all, this will cause dues to rise from M to M'. The intercepts on 

the Y and G axes will unequivocally move in towards the origin. It 

will also tend to cause the intercept on the H axis to shift in, but the 

increase in S/N will cause W , TT, and T_ to decline^, decreasing Î . 
g D H 

Thus, the net effect on the fraction 

24w - M 

% 

is indeterminate. However, as we shall see, the only relevant case is 

when the decrease in the denominator overwhelms the decrease in the 

numerator, causing the intercept on the H axis to shift out as pictured 

in Figure 12. 

If the decrease in the numerator caused by the increase in M 

ovenàielms the decrease in the denominator caused by the decline in P 

(via the decrease in TT, and T^), then the new budget plane will lie 

everywhere inside of the old budget plane, clearly making the individual 

worse off. This can be said without reference to a utility function 

because the increase in dues is greater than the savings in terms of the 

provided we are moving along the expansion path. 
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Y 

(24w - M) 

(24w - M') 

24w - M 

24w - M. 

24v - M 

24w - M. 

G 

Figure 12, Shifting the budget plane 
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lower cost of traveling to the tennis court even if the individual made 

the maximum number of trips to the court possible. This situation is 

likely to occur when S/N is already relatively large. In such a case, 

P is relatively small, and any reductions in P would also be small. 

This reduction would be less than the increase in dues, ôM/â(S/N) = Pg. 

The situation is graphically represented in Figure 13, 

Returning now to the case where increasing S/N causes the H intercept 

to shift out, the question of utility maximization still remains. 

Indifference surfaces in Y-H-G space can be obtained by taking the total 

differential of the utility function and setting it equal to zero as 

follows : 

U = U(Y, H, G) 

so 

du = |2dy + ̂ dH + ̂ dG = o . 

The location of these indifference surfaces are fixed. Thus, 

changing S/N shifts the budget plane, but not the indifference surfaces. 

The utility maximizing individual will therefore choose the S/N that is 

associated with the budget plane that allows him or her to reach the 

highest possible indifference surface. The utility maximum may be a 

* 
point such as U in Figure 14. 

Selecting a different S/N means shifting the budget plane and 

* 
obtaining a tangency on a different indifference surface. If U is the 

utility maximum, then all other values of S/N result in budget planes 

tangent to lower and indifference surfaces. Mathematically, solving for 

TJ involves finding the point where 



www.manaraa.com

42 

(24w - M) 

(24w - M') 

24w - M' 

24w - M' 

24w - M. 

G 

Figure 13. An inferior new budget plane 
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Y 

24w - M. 

Indifference surface 
24w -

G 

Figure 14. Utility maximization 
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du au 3Y au SH au SG ^ 
d(s/N) ~ aY a(s/N) an 3(S/n) ac a(s/N) ~ " • 

Once again, no analytic solution to this problem is possible because the 

queuing time equation is intractable. 

It is completely possible that, for non-tennis players in particular, 

the utility maximizing S/N = 0. In other words, some people would prefer 

having no tennis courts and therefore, no dues, as in Figure 15. 

It should also be noted that the utility maximizing S/N can be 

different for two individuals having identical utility functions. This 

is because they may live in different locations, and hence, TT and 

will differ. Thus, the equilibrium sized district for any particular 

S/N will result in different budget planes for each person. Consider, 

* * 
for example, a particular S/N with its associated equilibrium S and N . 

Individual A lives close to the center of an equilibrium district, •vdxile 

individual B lives near the edge of the district. Although A and B are 

identical in all other respects (not only having identical utility 

functions, but also the same X, e and w), TT and T^ will be larger for 

B than for A. Thus, Pg will be larger for B than for A, •viiich is 

reflected in different budget planes as illustrated in Figure 16. With 

A and B having different budget planes, it is not likely that they will 

have the same utility maximizing S/N. 

Returning to the larger story, each person will vote for the S/N 

which maximizes his utility, and the voter with the median preference will 

dominate. This final result determines the number of "tennis districts" 

to create, the number of people in each district, and the number of 
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Figure 15. 
* 
U for a non-tennis player 
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24w - M 

24w - M 

24v - M 

24w - M 

G 

Figure 16, Vocational differences illustrated 
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courts to build in each district. Suppose, for example, that the 

* * 
equilibrium S/N, (S/N) , is 1/20,000, and is associated with S = 2 

and N* = 40,000. If the city's population is 200,000 people, there will 

be 5 districts (200,000/40,000), with 2 courts and 40,000 people in each 

district. 
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CHAPTER V. CONCLUSION 

This dissertation has explained vdiy and given examples of how 

spatial and temporal considerations might be integrated into the economic 

theory of clubs. Space and time are important elements in determining 

the quality of club service, and a failure to incorporate them has been 

a serious deficiency in formal club theory. 

A model of fire suppression districts has been constructed \diich 

shows how equilibrium districts are determined under a particular 

decision-making framework. Items that affect the location of the 

equilibrium have also been discussed. Simulations of the restricted model 

were presented %Aiich supported the arguments in the text. Space, which 

requires time to move through, and time variables are central to the 

model. This is because time is a crucial variable ̂ flien an emergency 

such as a fire occurs. 

In the tennis court example, there are no longer any emergencies, 

but the model reflects the fact that time itself is a scarce resource. 

As such, time has an opportunity cost vAiich must be considered. Space 

enters the model because it requires the expenditure of both time and 

other resources (reflected by monetary costs) to move through. 

The models used in this dissertation are not offered as definitive 

efforts, but rather as prototypes upon vhich further analysis can be 

based. Possible extensions include incorporating more location theory, 

employing more sophisticated operations research techniques, allowing 

for different financing schemes and altering the decision-making 

framework. The models might also serve as the basis of empirical work. 
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APPENDIX A: QUEUING THEORY 

Introduction 

Queuing theory is the application of mathematical and statistical 

techniques to problems associated with "queues" or waiting lines. It was 

originally developed in response to the needs of business and industry, 

where queuing problems are quite common. 

Consider, for example, the predicament of the manager of a busy 

supermarket. If he hires too few clerks, the length of the check-out 

lines m^ become intolerably long, ultimately resulting in a loss of 

customers. On the other hand, if he hires too many clerks, he will find 

that he is paying them to stand around idle for most of the day. 

Determining the optimal number of clerks to hire is a classic queuing 

theory problem. 

The Structure of the Queuing Process 

The queuing process begins \Aien a "customer" (not necessarily human) 

arrives at the queuing system and requires service. If all available 

servers are occupied, a line forms. Eventually, the customer is served 

and then leaves the system. 

More formally, customers are generated from an "input source" or 

population. This population may be classified as either finite or 

infinite, though in practice any finite but "large" population may be 

treated as infinite [26, p. 9], The pattern in •rfiich members of the 

population arrive is typically, thougjh not always, assxmed to follow a 

Poisson distribution. Exançles of customers arriving at a queuing system 
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include people lining up at a bank teller's window, ships arriving at a 

port to tinload their cargo, papers being placed on a typist's desk, and 

phone calls for help arriving at a fire station. 

If all available servers are busy when the customers arrive, a queue 

forms. In some cases, the length of the queue itself is limited, perhaps 

by the size of the "waiting room". But even when the queue has no such 

limitations, it is possible that the customer may choose not to enter 

the queuing system if the line is too long. Such behavior is referred to 

as "balking". 

The order in which customers leave the queue to be served is known 

as the queue discipline. The most common type is "first-in-first-out" or 

FIFO discipline. Other types include "last-in-first-out" (LIFO), "served 

in random order" (SIRO), and variations of these •which incorporate a 

priority procedure. An example of this last type can be found at a 

hospital emergency room where critically injured patients are treated 

ahead of less seriously ill people who have been waiting longer. 

The queuing system may possess one or more servers. It is these 

individuals (or machines) who perform the task(s) that the customer 

requires. The time that it takes to accomplish this task is called the 

service time. If the service time is virtually identical for every 

customer, one may speak of a constant service time distribution. However, 

the length of the service time frequently varies with each customer. 

Hence, it becomes necessary to specify probability distributions for 

service times. The most common is the exponential distribution, but the 

Erlang (gamma) distribution is also frequently appropriate. 
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A Basic Model 

Modeling a real-world queuing process must begin by collecting 

information about the system in question. One must determine the size of 

the population, the nature of the arrival pattern, the maximum queue 

length, queue discipline, the number of servers, and the distribution of 

service times. For the sake of illustration, let us assume that we are 

examining a fairly standard queuing system with the following 

characteristics : 

1) The population is large enough that the rate of arrival may be 

treated as being independent of the number of people in the 

system. 

2) The arrival pattern of new customers follows a Poisson 

distribution with mean X. (X is, therefore, the mean arrival 

rate per unit of time.) 

3) Arrivals form a single queue which has no upper bound. There is 

no balking. 

4) Customers are served in order of arrival. (FIFO queue 

discipline.) 

5) There are s servers. 

6) The service time distribution is exponential with mean p,. Hence, 

l/|i is the expected service time. 

7) The utilization factor p is defined as X/(s^). p must be less 

than one, since if p > 1, the queue will become infinitely large, 

(p > 1 implies X > sp,. In such a situation, customers arrive 

faster than the system can process them.) 
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With such information, queuing theory allows one to calculate various 

steady-state characteristics of the system. For this particular model, 

the formulae needed to obtain most of the important characteristics have 

been derived and are readily available. Some of these are reproduced 

below [19, pp. 421-422]. 

1) The probability that there are no customers in the system is: 

P. = 

s-1 . fX/u) 1 
Z N: + s: l-(X/(s|j,)) 
N=0 

2) The expected length of the queue is: 

PQ(X/P)®P 

3) The expected waiting time in the queue (net of service time) is; 

4) The expected waiting time in the system (gross of service time) 

is: 

W = W + — . 
q p, 

5) The probability distribution of waiting times is: 

When s-l-X/p = 0, this becomes 

s:(i-p) 

-u,t F (X/p,) = 
P(W) > t) = e 1 + ?... pt . 
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Similar results are available for other types of queuing models. 

However, there is a large group of queuing models for vhich either no 

general solutions have been found, or the solutions obtained are so 

intractable as to be virtually useless for practical applications. As a 

result, Monte Carlo simulations are frequently employed as a means of 

estimating the characteristics of queuing systems. Such simulations are 

especially important when: 

1) The queue discipline is not FIFO, 

2) The arrival pattern is not Poisson, or 

3) The service time distribution is not constant, exponential or 

Erlang. 

It should be emphasized that the above formulae apply to queuing 

systems in a steady state. This is due primarily to \ihat Alec Lee called 

"the first working rule of queuing theory", namely, "time dependent 

solutions to queuing models are either unobtainable or unmanageable" [23, 

p. 26]. Nevertheless, one must recognize the fact that many queuing 

systems may never reach a steady state, or if they do, may not stay there 

long. But even in such circumstances, queuing models may provide some 

insight into the system. As Lee points out, 

"It is possible for an engineer to make a great deal of 

practical progress by using formulas for the properties of gases 

derived from the models of statistical mechanics (v&ich also 

assume steady-state conditions). Similarly, the operational 

research practitioner can make much headway by using steady-state 

formulas" [23, pp. 215-126]. 
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APPENDIX B: DETERMINING MEDIAN DISTANCE 

Consider a square, diamond-shaped district such as the one depicted 

below in Figure Bl. 

Figure Bl. A fire suppression district 

Distance r is the shortest distance from the center of the diamond 

to its perimeter. (This distance on any diamond will henceforth be called 

its "short radius". ) Basic geometry allows us to describe the length of 

one side of the diamond as being equal to r + r = 2r, The Pythagorean 

theorem allows us to determine the distance from the center of the diamond 

to a comer as being equal to r. 

With the length of one side of the diamond being equal to 2r, the 

2 2 
area of the diamond is (2r) = 4r . If population density is (uniformly) 
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equal to A, then the total number of people in the district is equal to 

2 
à k T .  

Consider another diamond with Z being the short radius, and Z < r, 

as shown in Figure B2. 

Figure B2, Concentric diamond Z 

The perimeter of such a diamond is 8Z. The number of people living 

along the perimeter of this diamond is A8Z. 

If we allow Z to vary from o to r, and then sum up the total number 

of people, we get 

r 

I A8Z dZ = Mr^ 
o 

xAich is the total number of people in the original diamond, as already 

demonstrated. 
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The percentage of the total population living on the perimeter of 

any particular diamond is 

A8Z 2Z 

2 
(2Z)/r is the density function of population. From it we can obtain 

both the mean and the median distances. 

Recall that the mean of any variable X is 

E(X) = J Xf(X)dX 

•where f(X) is the density function of X. Thus, the mean distance is 

r 2z 
E(Z) = J Z ̂  dZ = 2/3 r . 

o r 

The median, m, is obtained by solving for m xdiere 

J dZ = 1/2 
o r 

inçlying that m = —^ r. Median distance is, therefore, greater than 

mean distance, since l/«/Y > 2/3. 

Note that along a road grid, the distance to every point on the 

perimeter of a diamond from the center is the same. Consider, for exançle, 

the diamond \âiich has distance m for its short radius, as shown in 

Figure B3. 

Let the road grid run north-south and east-west. Distance m becomes 

distance 2e along the grid. (Note that vT m, the distance to the far 

comer, is also equal to 2e along the road grid.) So: 
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Figure B3. Distance along a road grid 

2 2 2 
m = e + e 

or 

and 

e = m 

2e = 
2m 

l̂î 

Recall that m = r, so 

Jl 

Travel distance along a road grid to the perimeter of a diamond xdiich 

contains half of the district's population is therefore equal to the 

short radius of the entire district. 
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APPENDIX C: OBTAINING THE DENSITY FUNCTION OF A RANDOM 
VARIABLE WHICH IS EQUAL TO THE SIM OF OTHER 
RANDOM VARIABLES 

Let Y, X, and Z be random variables such that Y = X+ Z. If X and 

Z are independent, the density function of Y may be obtained from the 

density functions of X and Z^. 

To illustrate the procedure, consider the following case, where X 

is distributed uniformly (a, b), and Z is distributed exponentially (X). 

The density functions are therefore 

f (X) = • ^ a < X < b 
X b - a — — 

and 

fgCZ) = Xe'^Z Z > 0 . 

If X and Z are independent, then 

= f^(X).f^(Z) . 

The distribution function of Y is 

Fy(t) = P(Y < t) 

and 

P(Y < t) = P(X + Z < t) . 

From this information one can obtain the density function of Y, 

•vAiich comes in two parts: 

^The density function of Y can be obtained even if X and Z are not 
independent, but the process is much more complicated. 
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Part I: a < t ̂  b 

t t-x 
P(X + Z < t) = r r f (X,Z)dZdX 

a o 

To obtain the density function of Y %bere a < t < b, one must take the 

derivative of the above distribution function with respect to t, tAiich 

results in the expression 

b^ (1 - + ̂ 5 . 

Part II: b < t 

b t-x 
P(X + Z < t) = J J f^ ̂ (X,Z)dZdX 

a o * 
b t-x 

= ; I bTT: >52 •K = ̂  [b - a + 
a o 

1 , "Xt + Xa —Xt + Xb. 1 
Y - e ) J . 

Taking the derivative with respect to t results in 

1 ,_"Xt + Xb -Xt + Xsl 
b - a ® • 

Hence, 

= (e'^t + Xb _ ^-Xt + Xa^ t > b . 
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It should be noted that the procedure can be extended to the more 

general case where 

N 
Y = S X. . 

i=l ^ 

With respect to obtaining the density function for T, recall that 

N 
T = S X. 

i=l ^ 

where X^ = detection and reporting time, 

X2 = queuing time, 

= travel time, and 

X^ = service time. 

In the basic queuing model of Appendix A, service time is assumed to 

have an exponential distribution. The density function of queuing time 

can be derived from the fact that 

P(W > t) = (1 - S P ) 
H=0 

where P^ is the probability that there are exactly N people in the queue 

at any time t [19, p. 422], 

The distribution function of W is therefore 
q 

p(w < t) = 1 - P(W > t) 
q - q 

= 1 - (1 - 2 P_) ^ 
N=0 ^ 

Hence, the density function of is 

d[p(¥ < t)] s-1 „ 
^ = s|i(l-p) (1-2 p ) e-sp(l-p)t t > 0 . 

N=0 
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The distributions of travel time and detection and reporting time 

might be hypothesized as having either truncated normal or uniform 

distributions. The exact form must, of course, be empirically verified. 

Obtaining the actual density function of T would involve specifying 

the exact density functions of all four component variables, and then 

solving the necessary quadruple integrals. 
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APPENDIX D: SIMOLAIION RESULTS 

The results of calculating values for S and (S/N) under various 

situations are presented in the accompanying table. The key to that 

table is as follows: 

K represents the population size required to generate one fire alarm 

per hour. Thus, the larger K is, the smaller the frequency of alarms for 

any given sized population. The numbers chosen for K stem from a chart 

presented on page 8 of Chaiken and Larson [6]. In 1968, at peak time on 

the highest alarm day, there were 111 alarms per hour in New York City. 

The population of New York City in 1970 was 7,894,851 [36]. Dividing 

that population by 111 produces the number 71,125, representing K at 

peak time on a peak day. According to the same chart, peak time on an 

average day generated 48 alarms per hour, resulting in K equal to 164,476. 

K equal to 263,162 represents peak time on the lowest alarm day of the 

year, •vâien 30 alarms per hour were reported. 

Ug represents mean service rate, i.e. the number of fires which a 

fire company can extinguish per hour, = 2 implies service time 

averages 30 minutes per fire, = 3 implies a 20-minute average, and so 

on. Note that service time here includes both "set-up time" and "roll-up 

time" (i.e. the time needed to set-up the fire hoses, etc., as well as 

the time needed to roll them up again). 

"A" represents population density. In 1970, New York City had a 

population density of 26,345 people per square mile. The number 39,517 

was chosen because it is 50% greater than 26,345, or just slightly larger 

than the density of the Bronx (35,721 people per square mile in 1970). 
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Table Dl, Simulation results 

* 
Values of S 

S/N 

K U. 
40,000 35,000 30,000 25,000 20,000 15,000 10,000 

71,125 

164,476 

263,162 

2 39,517 5 5 4 4 3 3 2 
26,345 5 5 4 4 3 3 2 
13,172 5 4 4 3 3 3 2 
2,634 4 4 3 3 3 2 2 

3 39,517 4 3 3 3 3 2 2 
26,345 4 3 3 3 3 2 2 
13,172 3 3 3 3 2 2 2 
2,634 3 3 3 2 2 2 2 

4 39,517 3 3 3 2 2 2 2 
26,345 3 3 3 2 2 2 2 
13,172 3 3 2 2 2 2 2 
2,634 3 2 2 2 2 2 2 

2 39,517 3 3 3 2 2 2 2 
26,345 3 3 3 2 2 2 2 
13,172 3 3 2 2 2 2 2 
2,634 2 2 2 2 2 2 2 

3 39,517 2 2 2 2 2 2 2 
26,345 2 2 2 2 2 2 2 
13,172 2 2 2 2 2 2 2 
2,634 2 2 2 2 2 2 1 

4 39,517 2 2 2 2 2 2 2 
26,345 2 2 2 2 2 2 2 
13,172 2 2 2 2 2 2 1 
2,634 2 2 2 2 2 1 1 

2 39,517 2 2 2 2 2 2 2 
26,345 2 2 2 2 2 2 2 
13,172 2 2 2 2 2 2 2 
2,634 2 2 2 2 2 2 2 
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2 
2 
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2 
2 
2 
2 

2 
2 
2 
1 

2 
2 
2 
2 

2 
1 
1 
1 

1 
1 
1 
1 

2 
2 
2 
1 
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Values of (S/N)* Values of (S/N)* 
(N is in thousands) (N is in thousands) 

WE 
C MB 

BR 

$50,000 $100,000 $150,000 
$500,000 $1,000,000 $1,500,000 37,500 75,000 112,500 

45,000 90,000 135,000 

1/5 1/10 1/15 1/15 1/10 1/5 
1/5 1/10 1/10 1/15 1/10 1/5 
1/5 1/10 1/10 1/10 1/10 1/5 
1/5 1/5 1/5 1/10 1/5 1/5 

1/5 1/10 1/10 1/15 1/10 1/10 
1/5 1/10 1/10 1/15 1/10 1/10 
1/5 1/10 1/10 1/15 1/10 1/5 
1/5 1/5 1/10 1/10 1/5 1/5 

1/5 1/10 1/15 1/15 1/10 1/10 
1/5 1/10 1/15 1/15 1/10 1/10 
1/5 1/10 1/10 1/15 1/10 1/5 
1/5 1/10 1/10 1/10 1/10 1/5 

1/10 1/15 1/20 1/30 1/15 1/15 
1/10 1/15 1/20 1/25 1/15 1/15 
1/10 1/15 1/20 1/20 1/15 1/10 
1/5 1/10 1/15 1/15 1/10 1/10 

1/15 1/20 1/25 1/30 1/20 1/15 
1/10 1/20 1/25 1/30 1/20 1/15 
1/10 1/15 1/20 1/25 1/15 1/15 
1/5 1/10 1/15 1/15 1/10 1/5 

1/15 1/20 1/25 1/30 1/20 1/15 
1/10 1/20 1/25 1/30 1/20 1/15 
1/10 1/15 1/20 1/25 1/15 1/15 
1/5 1/10 1/10 1/15 1/10 1/10 

1/15 1/25 1/30 1/35 1/25 1/20 
1/15 1/25 1/30 1/35 1/25 1/20 
1/15 1/20 1/25 1/30 1/20 1/15 
1/10 1/15 1/20 1/20 1/15 1/10 
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Table Dl. (Continued) 

* 
Values of S 

S/N S/N 

K U A 
40,000 35,000 30,000 25,000 20,000 15,000 10,000 

3 39,517 2 2 2 2 2 2 2 
26,345 2 2 2 2 2 2 2 
13,172 2 2 2 2 2 2 1 
2,634 2 2 2 2 1 1 1 

4 39,517 2 2 2 2 2 1 1 
26,345 2 2 2 2 2 1 1 
13,172 2 2 2 2 2 1 1 
2,634 2 1 1 1 1 1 1 
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Values of (S/N)* Values of (S/N) 
(N is in thousands) (N is in thousands) 

WE 
C WB 

BR 

$50,000 $100,000 $150,000 
1 $500,000 $1,000,000 $1,500,000 37,500 75,000 112,500 

5,000 45,000 90,000 135,000 

1 1/20 1/30 1/35 
1 1/15 1/25 1/35 
1 1/15 1/25 1/30 
1 1/10 1/15 1/15 

1 1/20 1/30 1/40 
1 1/15 1/30 1/35 
1 1/15 1/25 1/30 
1 1/10 1/15 1/15 

(Wealth held constant) 
wr = $100,000 
WB = 75,000 
BR = 90,000 

1/45 1/30 1/20 
1/40 1/25 1/20 
1/35 1/25 1/20 
1/20 1/15 1/10 

1/50 1/30 1/25 
1/45 1/30 1/20 
1/35 1/25 1/15 
1/20 1/15 1/10 

(Cost held constant) 
C = $1,000,000 
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The number 13,172 is one-half of 26,345, and 2634 is only 10% of 26,345, 

or roughly equal to the population density of Ames, Iowa (2,321 people 

per square mile in 1970). 

C represents the cost of maintaining one fire company for one year. 

Chaiken and Larson [6, p. 10] indicate that the cost of operating a 

single fire engine now frequently exceeds $500,000 per year, and many 

fire companies typically consist of two fire engines. 

WE represents the total wealth of the median individual. WB 

represents the portion of that wealth \diich would be jeopardized by a 

fire. BR is equivalent to the letter "g" in the text and is the rate at 

which fire will destroy wealth per hour. The values for BR are 

"guestimated" from page 23 of reference 20, where Ignall et present 

a ballpark figure of $1000 per minute of damage on a MB equal to $50,000. 

Hence, WB = $75,000 implies BR = $1,500 per minute or $90,000 per hour, 

etc. 

The table reveals several things. First, an expansion path is 

obtained by holding K, U^, and A constant viiile changing S/N. Larger 

* 
values of S/N tend to result in smaller values of S (and therefore, 

* * 
smaller N ). In some cases, S does not change due to the integers 

problem; nevertheless, a constant S does result in smaller N as S/N 

increases. To illustrate the point, consider the case where K = 71,125, 

Ug = 2, and A = 39,517. For S/N = 1/40,000, S =5, inçlying an 

N* = 200,000. For S/N = 1/10,000, S* = 2, implying an N* = 20,000. 

For S/N = 1/5,000, S still equals 2, but N will not only equal 10,000. 
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* 
Also, for a given S/N, S tends to decline as either K or 

increases or as A decreases. An increase in K or means that queuing 

time declines, so travel time becomes relatively more important. A 

decrease in A also means that travel time begins to dominate queuing 

considerations sooner, making for smaller districts in terms of both S 

and N. Again, however, the integers phenomenon continues with changes 

being discrete rather than continuous. 

As discussed in the text, the choice of the expected utility 

maximizing point along an expansion path [(S/N) ] is influenced by such 

things as cost, wealth, and the rate at which fire losses occur. The 

section of the table which is the second from the right examines the 

effect of changes in C under various conditions, holding HT, 1© and BR 

constant. Keeping the integers problem in mind, an increase in C causes 

* 
(S/N) to fall, illustrating the law of demand. For example, for 

K = 164,476, Ug = 2 and A = 39,517, (S/N)* goes from 1/10,000 to 1/15,000 

to 1/20,000 as C rises from $500,000 to $1,000,000 to $1,500,000. 

Furthermore, the effect seems to be more pronounced as K increases, 

implying that demand is more elastic as the frequency of alarms declines. 

Compare, for example, the case cited above to the situation where 

K = 263,162, keeping and A constant. Here, (S/N)* falls from 1/15,000 

to 1/25,000 as C rises from $500,000 to $1,000,000, indicating a greater 

sensitivity to cost. This result should be expected, since with lower 

alarm frequencies, the need for fire services is reduced, and it is 

well-known that the less necessary an item is, the more elastic will be 

the demand for that item. 
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In addition, for any given C, (S/N) tends to decline as K, U^, 

and/or A increase. The integers problem blurs this result, as an 

* 
increase in these parameters will not always reduce (S/N) . The effect 

of Ug is less pronounced than the effects of K and A, and there is one 

* 
example of an increase in actually increasing (S/N) (U^ changing from 

2 to 3 for C = $1,500,000, K = 71,125, and A = 39,517). Nevertheless, 

these trends exist throughout the table, which the reader can verify for 

his/herself. 

In the ri^t-hand section of the table, the effects of changes in 

wealth (for a constant level of C) are illustrated. Assuming that 'WT, WB, 

and BR change in proportion to one another, an increase in WT does, as 

* 
expected, tend to cause (S/N) to increase. For example, if K = 164,476, 

Ug = 3, and A = 39,517, (S/N)* rises from 1/30,000 to 1/20,000 to 1/15,000 

as WT rises from $50,000 to $100,000 to $150,000, As with cost changes, 

the "wealth effect" seems to be more pronounced as K increases, implying 

a greater wealth elasticity as the frequency of alarms falls. To 

illustrate, compare the above situation to the case vAiere K = 263,162. 

* 
Here, as wealth increases over the same range, (S/N) increases from 

1/45,000 to 1/30,000 to 1/20,000. 

* 
Finally, for any given WE, an increase in K, or A causes (S/N) 

to fall. Once again, the integers problem seems to cloud the issue, but 

the trend is definitely observable. 
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APPENDIX E: RISK NEUTRALITY MD INDIRECT UTILITY FONCTIONS 

It is sometimes necessary to determine if a utility function is risk 

neutral (or risk averse) in terms of a parameter tiiich is not directly in 

the utility function. Such is the case in the text vàiere utility is a 

function of non-tennis expenditures, tennis playing, and leisure, it is 

necessary to test for neutrality with respect to the "price" of tennis 

playing. In this situation, one must convert the (direct) utility function 

into an indirect utility function, v&iich defines utility in terms of 

income and prices rather than in terms of goods, services, and leisure. 

If the indirect utility function is linear with respect to the parameter 

in question, then the direct utility function is risk neutral with respect 

to that parameter. 

To illustrate the idea, let us consider a utility function of the 

form 

U = x^^z'^ 

where a + b + c = 1 and X, Y, and Z are private goods with prices P^, P^, 

and Pg. Suppose that the individual has income I, and one wants to know 

whether he or she is risk-neutral with respect to that income. 

The first step is to derive the demand curves for X, Y, and Z from 

the first order conditions for utility maximization. Mathematically, 

maximize U = X^^Z^ subject to the constraint that I = P^X + P^Y + p^Z. 

The Lagrangian is 

L = X^Y^Z^ + x[l - P^X - PyY - PgZ] 
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and the first order conditions are 

S - T* = 0 

# = 2' - XPy = 0 

g = cx' Y' zC-1 - XP, . 0 

I = I - P^X - PYÏ - P 2̂ = 0 . 

Solving these equations for X, Y, and Z gives one the demand curves: 

y 

• 

Substituting these values back into the utility function gives one 

the utility maximum, given prices and income: 

U = (X*)^ (Y*)^ (Z*)^ . 

* * * 
Substitution in the values of X , Y , and Z gives one the indirect 

utility function, V, in terms of prices and income: 

V = (f̂ ) (̂ ) (f̂ ) 
X y z 

? = (#-/ &)" (f-)°. 
X y z 
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Recall that a + b + c = 1, and that P^, P^, and P^ are constants. 

Thus, 

V = I-k 

where 

k = (f-)̂  (|-)̂  (f-)'' 
X y z 

and k is a constant. Indirect utility is therefore a linear function of 

income, so the original utility function is said to be risk-neutral with 

respect to income. Note, however, that this particular utility function is 

not risk neutral in the prices of the goods, since the indirect utility 

function is not linear in prices. 

With respect to the problem in the text, it might be sufficient to 

treat the problem as if individuals were risk neutral with respect to 

the price of playing tennis since it is typically such a small fraction of 

total expenditures. 
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